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CHAPTER VI-6 

Reliability Based Design of Coastal Structures 

VI-6-1. Introduction. 

 a. Conventional design practice for coastal structures is deterministic in nature and is 
based on the concept of a design load which should not exceed the resistance (carrying capacity) 
of the structure. The design load is usually defined on a probabilistic basis as a characteristic 
value of the load, for example the expectation (mean) value of the 100-year return period event. 
However, this selection is often made without consideration of the involved uncertainties. In 
most cases the resistance is defined in terms of the load that causes a certain design impact or 
damage to the structure, and it is not given as an ultimate force or deformation. This is because 
most of the available design formulae only give the relationship between wave characteristics 
and some structural response, such as runup, overtopping, armor layer damage, etc. An example 
is the Hudson formula for armor layer stability. 

 b. Almost all coastal structure design formulae are semiempirical and based mainly on 
central fitting to model test results. The often considerable scatter in test results is not considered 
in general because the formulae normally express only the mean values. Consequently, the 
applied characteristic value of the resistance is then the mean value and not a lower fractile as is 
usually the case in other civil engineering fields. The only contribution to a safety margin in the 
design is inherent in the choice of the return period for the design load. (The exception is when 
the design curve is fitted to the conservative side of the data envelope to give a built-in safety 
margin.) It is now more common to choose the return period with due consideration of the 
encounter probability, i.e., the probability that the design load value is exceeded during the 
structure lifetime. This is an important step towards a consistent probabilistic approach. 

 c. In addition to design load probability, a safety factor (as given in some national 
standards) might be applied as well, in which case the method is classified as a Level I 
(deterministic/quasi-probabilistic) method. However, this approach does not allow determination 
of the reliability (or the failure probability) of the design; and consequently, it is not possible to 
optimize structure design or avoid overdesign of a structure. In order to overcome this problem, 
more advanced probabilistic methods must be applied where the uncertainties (the stochastic 
properties) of the involved loading and strength variables are considered. 

 d. Methods where the actual distribution functions for the variables are taken into 
account are denoted as Level III methods. Level II methods generally transform correlated and 
non-normally distributed variables into uncorrelated and standard normal distributed variables, 
and reliability indices are used as measures of the structural reliability. Both Level II and III 
methods are discussed in the following sections. Also described is an advanced partial 
coefficient system which takes into account the stochastic properties of the variables and makes 
it possible to design a structure for a specific failure probability level. 
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VI-6-2. Failure Modes and Failure Functions. 

 a. Evaluation of structural safety is always related to the structural response as defined 
by the failure modes. Failure modes for various structures are presented in Part VI-2-4, “Failure 
Modes of Typical Structure Types.” 

 b. Each failure mode must be described by a formula, and the interaction (correlation) 
between the failure modes must be known. As an illustrative example consider only one failure 
mode, “hydraulic stability of the main armor layer” described by the Hudson formula 

3
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3 cot
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n
D

H  D
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 (VI-6-1) 

 
where 
 

Dn = nominal block diameter 
 

Δ = ρs /ρw - 1 
 

ρs = block density 
 

ρw = water density 
 

α = armor slope angle 
 

Hs = significant wave height 
 

KD = coefficient signifying the degree of damage (movements of the blocks) 
 
 c. The formula can be split into load variables Xi

load and resistance variables, Xi
res. 

Whether a parameter is a load or a resistance parameter can be seen from the failure function. If 
a larger value of a parameter results in a safer structure, it is a resistance parameter; and if a 
larger value results in a less safe structure, it is a load parameter. 

 d. According to this definition one specific parameter can in one formula act as a load 
parameter while in another formula the same parameter can act as a resistance parameter. An 
example is the wave steepness parameter in the van der Meer formulas for rock, which is a load 
parameter in the case of surging waves, but a resistance parameter in the case of plunging waves. 
The only load variable in Equation VI-6-1 is Hs while the others are resistance variables. 

 e. Equation VI-6-1 is formulated as a failure function (performance function) 
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 f. All the involved parameters are regarded as stochastic variables, Xi , except KD , 
which signifies the failure, i.e., a specific damage level chosen by the designer. The factor A in 
Equation VI-6-2 is also a stochastic variable signifying the uncertainty of the formula. In this 
case the mean value of A is 1.0. 

 g. In general Equation VI-6-2 is formulated as 

g = R - S  (VI-6-3) 
 
where R stands for resistance and S for loading. Usually R and S are functions of many random 
variables, i.e., 

1 2 1( , , . . . , ) ( , ... , ) ( )res res res load load
m m nR  R           and   S  S          or   g  g XX X X X X    

 
The limit state is given by 
 

g = 0  (VI-6-4) 
 
which is denoted the limit state equation and defines the so-called failure surface which 
separates the safe region from the failure region. 
 
 h. In principle, R is a variable representing the variations in resistance between 
nominally identical structures, whereas S represents the maximum load effects within a period of 
time, for instance T successive years. The distributions of R and S are both assumed independent 
of time. The probability of failure, Pf , during any reference period of duration T years is then 
given by 

 Prob 0fP g   (VI-6-5) 

 
i. The reliability Rf is defined as  

 
1f fR P   (VI-6-6) 

 
VI-6-3. Single Failure Modes Probability Analysis. 

 a. Level III methods. 

 (1) A simple method (in principle) of estimating Pf is the Monte Carlo method where a 
very large number of realizations x of the variables X are simulated. Pf is then approximated by 
the proportion of the simulations where g  0. The reliability of the Monte Carlo method depends 
on a realistic assessment of the distribution functions for the variables X and their correlations. 

 (2) Given Xf  as the joint probability density function (jpdf ) of the vector X  = ( X1 , X2 , 

... , Xn ), then Equation VI-6-5 can be expressed by 



EM 1110-2-1100 (Part VI) 
Change 3 (28 Sep 11) 

VI-6-4 

 f R S XP f x d x   (VI-6-7) 

 
 (3) Note that the symbol x is used for values of the random variable X. If only two 
variables R and S are considered then Equation VI-6-7 reduces to 

( , ) ( , )f R  SR  S    r  s  dr dsfP    (VI-6-8) 

 
which is conceptually illustrated in Figure VI-6-1. If more than two variables are involved it is 
not possible to describe the jpdf as a surface but requires an imaginary multidimensional 
description. 
 
 (4) Figure VI-6-1 also shows the so-called design point which is the point of failure 
surface where the joint probability density function attains the maximum value, i.e., the most 
probable point of failure. 

Figure VI-6-1. Illustration of the two-dimensional joint probability density function for loading 
and strength 

 (5) Unfortunately, the jpdf is seldom known. However, the variables can often be 
assumed independent (noncorrelated) in which case Equation VI-6-7 is given by the n-fold 
integral 

1 1 1... ( ) .. . ( ) .. .
n

f n nX XR S
         d     d f fx x x xP


    (VI-6-9) 

 
where fXi are the marginal probability density function of the variables Xi . The amount of 
calculations involved in the multidimensional integration Equation VI-6-9 is enormous if the 
number of variables, n, is larger than 5. 
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 (6) If only two independent variables are considered, e.g., R and S, then Equation VI-6-9 
simplifies to 

( ) ( )f R SR  S
  r  s  dr dsf fP


   (VI-6-10) 

 
which by partial integration can be reduced to a single integral 
 

0 ( ) ( )f R S   x  x  dxfP F
   (VI-6-11) 

 
where FR is the cumulative distribution function for R. Formally the lower integration limit 
should be -, but it is replaced by 0 since, in general, negative strength is not meaningful. 
 
 (7) Equation VI-6-11 represents the product of the probabilities of two independent 
events, namely the probability that S lies in the range x, x+dx (i.e., fS(x) dx) and the probability 
that R  x (i.e., FR(x)), as shown in Figure VI-6-2. 

 b. Level II methods. This section gives a short introduction to reliability calculations at 
Level II. Only the so-called first-order reliability method (FORM), where the failure surface is 
approximated by a tangent hyberplane at some point, is presented. A more accurate method is the 
second-order reliability method (SORM), which uses a quadratic approximation to the failure 
surface. 

 (1) Linear failure functions of normally-distributed random variables. 

 (a) Assume the loading S(x) and the resistance R(x) for a single failure mode to be 
statistically independent and with density functions as illustrated in Figure VI-6-2. The failure 
function is given by Equation VI-6-3 and the probability of failure is expressed by Equation 
VI-6-10 or Equation VI-6-11. 

 (b) However, in many cases these functions are not known, but under certain 
assumptions the functions might be estimated using only the mean values and standard 
deviations. If S and R are assumed to be independent normally distributed variables with known 
means and standard deviations, then the linear failure function g = R - S is normally distributed 
with mean value, 

-g R S        (VI-6-12) 

 
and standard deviation 
 

2 2( )g R S           (VI-6-13) 
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Figure VI-6-2. Illustration of failure probability in case of two independent variables, S and R 

The quantity (g - μg ) /σg will be unit standard normal, and consequently, 
 

0
-

0 -
( 0) ( ) (- )g

f g
g

  
  prob  g     x  dx      fP 

  
       

 
 (VI-6-14) 

where 
 

g

g

  


 


 (VI-6-15) 

 
is a measure of the probability of failure referred to as the reliability index (Cornell 1969). 
Figure VI-6-3 illustrates β and the reliability index. Note that β is the inverse of the coefficient of 
variation, and it is the distance (in terms of number of standard deviations) from the most 
probable value of g (in this case the mean) to the failure surface, g = 0.  
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Figure VI-6-3. Illustration of reliability index 

 (c) If R and S are normally distributed and “correlated,” then Equation VI-6-14 still 
holds, but σ is given by 

2 2( 2 )g R S R SRS                     (VI-6-16) 

 
where ρRS is the correlation coefficient 
 

[( - ) ( - )]( , ) R S
RS

R S R S

E R      S    Cov R  S
    

  

 
 

   
 (VI-6-17) 

 
R and S are said to be uncorrelated if ρRS = 0. 
 
 (d) In addition to the illustration of β in Figure VI-6-3, a simple geometrical 
interpretation of β can be given in the case of a linear failure function g = R - S of the 
independent variables R and S by a transformation into a normalized coordinate system of the 
random variables R = (R - μR ) /σR and S = (S - μS) /σS , as shown in Figure VI-6-4. 

 (e) With these variables the failure surface g = 0 is linear and given by 

- - 0R S R SR    S               (VI-6-18) 
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Figure VI-6-4. Illustration of  in normalized coordinate system 

 (f) By geometrical considerations it can be shown that the shortest distance from the 
origin to this linear failure surface is equal to in which Equations VI-6-12 and VI-6-13 are used. 

2 2

-g R S

g R S

  
    

  

  
  

  
 (VI-6-19) 

 
 (2) Nonlinear failure functions of normally-distributed random variables. 

 (a) If the failure function g = g ( X )  is nonlinear, then approximate values for μg and σg 
can be obtained by using a linearized failure function. Linearization is generally performed by 
retaining only the linear terms of a Taylor-series expansion about some point. However, the 
values of μg and σg , and thus the value of β, depend on the choice of linearization point. 
Moreover, the value of β defined by Equation VI-6-15 will change when different, but 
functionally equivalent, nonlinear failure functions are used. 

 (b) To overcome these problems, a transformation of the basic variables 

1 2 nX  = ( , , . . . ,  )X X X  into a new set of normalized variables 1 2 nZ = ( , , . . . ,  )Z Z Z is performed. 

For uncorrelated normally distributed basic variables X  the transformation is 

-
i

i

i X
i

X

  X
  Z





 (VI-6-20) 

 
in which case μZi = 0 and σZi = 1. By this linear transformation the failure surface g = 0 in the 
x-coordinate system is mapped into a failure surface in the z-coordinate system which also 
divides the space into a safe region and a failure region as illustrated in Figure VI-6-5. 

 (c) Figure VI-6-5 introduces the Hasofer and Lind reliability index βHL which is defined 
as the distance from the origin to the nearest point, D, of the failure surface in the z-coordinate 
system (Hasofer and Lind 1974). This point is called the design point. The coordinates of the 
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design point in the original x-coordinate system are the most probable values of the variables X  
at failure. βHL can be formulated as 

1/ 2

2min
( ) 0

1
iHL

n

    z
g  z  

i

 
       

 (VI-6-21) 

Figure VI-6-5. Definition of the Hasofer and Lind reliability index, HL 

 (d) The special feature of βHL , as opposed to β, is that βHL is related to the failure 

“surface” g (  z  ) = 0  which is invariant to the failure function because equivalent failure 
functions result in the same failure surface. 

 (e) The calculation of βHL and the design point coordinates can be undertaken in a 
number of different ways. An iterative method must be used when the failure surface is 
nonlinear. A widely used method of calculating βHL is 

 Step 1. Select some trial coordinates of the design point in the z-coordinate system 

1 2( , , .. . , )d d d d
n          z z zz   

 
 Step 2. Calculate αi i = 1, 2, . . . , n by 

d

i
i z z  

g
  

z
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 Step 3. Determine a better estimate of d
z  by 

 

 
1

2

1

d

n
d

i i z z
d i
i i n

i
i

z g
z

















 

 
 Step 4. Repeat Steps 2 and 3 to achieve convergence 

 Step 5. Evaluate βHL by 

 
1

22

1

n
d

HL i
i

z


 
  
 
  

 
The method is based on the assumption of the existence of only one minimum. However, several 
“local” minima might exist. In order to avoid convergence toward a local minima (and thereby 
overestimation of βHL and the reliability) several different sets of trial coordinates might be tried. 
 
 (3) Nonlinear failure functions of non-normal random variables. 

 (a) It is not always a reasonable assumption to consider the random variables normally 
distributed. For example, parameters characterizing the sea state in long-term wave statistics, 
such as Hs , will in general follow extreme distributions (e.g., Gumbel and Weibull). These 
distributions are quite different from the normal distribution and cannot be described using only 
the mean value and the standard deviation. 

 (b) For such cases it is still possible to use the reliability index βHL , but an extra 
transformation of the non-normal basic variables into normal basic variables must be performed 
before βHL can be determined as previously described. 

 (c) A commonly used transformation is based on the substitution of the non-normal 
distribution of the basic variable Xi by a normal distribution in such a way that the density and 
distribution functions fXi and FXi are unchanged at the design point. 

 (d) If the design point is given by d d d
1 2 n,  , . . . , x x x , then the transformation reads 

1

1

-
( )

-1
( )

i

i

i

i i

d
i Xd

iX
X

d
i Xd

iX
X X

  x
     xF

  x
      f x








 







 

 
    

 
 

   
 

 (VI-6-22) 

 
where μXi and σXi are the mean and standard deviation of the approximate (fitted) normal 
distribution. 
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 (e) Equation VI-6-22 yields 
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 (f) Equation VI-6-22 can also be written 

-
( ) ( ) ( )i

i

i

d
i Xd d

ii iX HL
X
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 (g) Solving with respect to xi

d gives 

-1 [ ( )]
i

d
i iX HL       x F     (VI-6-24) 

 
 (h) The iterative method presented above for calculation of βHL can still be used if for 
each step of iteration the values of μXi and σXi given by Equation VI-6-24 are calculated for 
those variables where the transformation (Equation VI-6-22) has been used. For correlated 
random variables the transformation into noncorrelated variables is used before normalization. 

 (4) Time-variant random variables. The failure functions within breakwater engineering 
are generally of the form 

1 2( ) - ( , , )s mg   R      W    f f H T  (VI-6-25) 

 
where R  represents the resistance variables and Hs , W, and Tm are the load variables signifying 
the wave height, the water level, and the wave period. The random variables are in general 
time-variant. 

 (a) Discussion of load variables: 

 The most important load parameter in breakwater engineering is the wave height. It is 
a time-varying quantity which is best modeled as a stochastic process. Distinction is made 
between short-term and long-term statistics of the wave heights. Short-term statistics deal with 
the distribution of the wave height H during a stationary sequence of a storm, i.e., during a 
period of constant Hs (or any other characteristic wave height). The short-term wave height 
distribution follows the Rayleigh distribution for deepwater waves and some truncated 
distribution in the case of shallow-water waves. 

 Long-term statistics deal with the distribution of the storms which are then 
characterized by the maximum value of Hs occurring in each storm. The storm history is given as 
the sample (Hs1 , Hs2,... , Hsn ) covering a period of observation, Y. Extreme-value distributions 
like the Gumbel and Weibull distributions are then fitted to the data sample. For strongly depth-



EM 1110-2-1100 (Part VI) 
Change 3 (28 Sep 11) 

VI-6-12 

limited wave conditions a normal distribution with mean value as a function of water depth 
might be appropriate. 

 The true distribution of Hs can be approximated by the distribution of the maximum 
value over T years, which is denoted as the distribution of Hs

T. The calculated failure probability 
then refers to the period T (which in practice might be the lifetime of the structure) if distribution 
functions of the other variables in Equation VI-6-25 are assumed to be unchanged during the 
period T. 

 As an example, consider a sample of n independent storms, i.e., Hs1 , Hs2, ... , Hsn , 
obtained within Y years of observation. Assume that Hs follows a Gumbel distribution given by 

- ( - )( ) exp - s   H
sF      eH       (VI-6-26) 

 
which is the distribution of Hs over a period of Y years with average time span between 
observations of Y/n. 

 The distribution parameters α and β can be estimated from the data using techniques 
such as the maximum likelihood method or the methods of moments. Moreover, the standard 
deviations of α and β, signifying the statistical uncertainty due to limited sample size, can also be 
estimated. 

 The sampling intensity is λ = n / Y. Within a T-year reference period the number of 
data will be λT. The probability of the maximum value of Hs within the period T is then 

 - ( - )( ) [ ( ) exp -] s
TT   T H

s sF     F      eH H
        (VI-6-27) 

 
 The expectation (mean) value of Hs

T is given by 

1 1
- ln - ln 1-T

s  H
           

T


 
       

 (VI-6-28) 

 
and the standard deviation of Hs

T (from maximum likelihood estimates) is 

2

1/ 2
2

1 1
1.109 0.514 -ln - ln 1-

1
0.608 - ln - ln 1-

T
s  H

 

                
n T

           
T






                 

               

 (VI-6-29) 

 
 Equation VI-6-29 includes the statistical uncertainty due to limited sample size. Some 

uncertainty is related to the estimation of the sample values Hs1 , Hs2 , ... , Hsn arising from 
measurement errors, errors in hindcast models, etc. This uncertainty corresponds to a coefficient 
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of variation σHs /μHs on the order of 5 - 20 percent. The effect of this might be implemented in the 
calculations by considering a total standard deviation of 

2 2
T ss HH

         (VI-6-30) 

 
 In Level II calculations, Equation VI-6-27 is normalized around the design point, and 

Equations VI-6-28 and VI-6-29 or VI-6-30 are used for the mean and the standard deviation. 

 Instead of substituting Hs in Equation VI-6-25 with Hs
T, the following procedure 

might be used: Set T in Equations VI-6-27 to VI-6-29 to be 1 year. The outcome of the 
calculations will then be the probability of failure in a 1-year period, Pf (1 year). If the failure 
events of each year are assumed independent for all variables then the failure probability in T 
years is 

( ) 1-[1- (1 )]T
f f T years           yearP P  (VI-6-31) 

 
 This assumption simplifies the probability estimation somewhat, and for some 

structures it is reasonable to assume failure events are independent, e.g., rubble-mound stone 
armor stability. However, for some resistance variables, such as concrete strength, it is 
unrealistic to assume the events of each year are independent. The calculated values of the 
failure probability in T-years using Hs

1 year and Hs
T will be different. The difference will be very 

small if the variability of Hs is much larger than the variability of other variables. 

 The water level W is also an important parameter because it influences the structure 
freeboard and limits wave heights in shallow-water situations. Consequently, for the general case 
it is necessary to consider the joint distribution of Hs, W, and Tm. However, for deepwater waves 
W is often almost independent (except for barometric effects) of Hs and Tm and can be 
approximated as a noncorrelated variable that might be represented by a normal distribution with 
a certain standard deviation. The distribution of W is assumed independent of the length of the 
reference period T. In shallow water, W will be correlated with Hs due to storm surge effects. 

 The wave period Tm is correlated to Hs. As a minimum the mean value and the 
standard deviation of Tm and the correlation of Tm with Hs should be known in order to perform a 
Level II analysis. However, the linear correlation coefficient is not very meaningful because it 
gives an insufficient description when the parameters are non-normally distributed. Alternatively 
the following approach might be used: From a scatter diagram of Hs and Tm a relationship of the 
form Tm = A f(Hs) is established in which the parameter A follows a normal distribution (or some 
other distribution) with mean value μA = 1 and a standard deviation σA which signifies the scatter. 
Tm can then be replaced by the variable A in Equation VI-6-25. The variable A is assumed 
independent of all other parameters. 
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 Generally, the best procedure for coping with the correlations between Hs , W, and Tm 
is to work on the conditional distributions. Assume the distribution of the maximum value of Hs 
within the period T is given as F1 (Hs

T). Furthermore, assume the conditional distributions F2 (W 
|Hs

T) and F3 (Tm |Hs
T) are known. Let Z1 , Z2 and Z3 be independent standard normal variables and  

1 1

2 2

3 3
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( ) ( | )

T
s

T
s

T
m s

    z F H

   W  z F H

     z F T H

 

 

 

 

 
 The inverse relationships are given by 

-1
1 1

-1
2 2

-1
3 3

[ ( )]

[ ( ) | ]

[ ( ) | ]

T
s

T
s

T
m s

  H F z

W   F z H

   T F z H

 

 

 

 

 

 By converting the resistance variables R  into standard normal variable oZ , i.e., the 

resistance term is written 1 3( ) ( )of R f z , then the failure function Equation VI-6-25 becomes 

 -1 -1 -1
1 1 2 2 3 33 2( ) - [ ( )] , [ ( ) | ] , [ ( ) | ] 0T T

s sog                   f f F z F z H F z Hz      

 
 Because g now comprises only independent standard normal variables, the usual 

iteration methods for calculating βHL can be applied. 

 (b) Discussion of resistance parameters: 

 The service life of coastal structures spans anywhere between 20 to 100 years. Over 
periods of this length a decrease in the structural resistance is to be expected because of various 
types of material deterioration. Chemical reaction, thermal effect, and repeated loads (fatigue 
load) can cause deterioration of concrete and natural stone leading to disintegration and rounding 
of elements. Also the resistance against displacements of armor layers made of randomly placed 
armor units will decrease with the number of waves (i.e., with time) due to the stochastic nature 
of the resistance. Consequently, for armor layers this means a reduction over time of the Dn and 
KD parameters in the Hudson equation. 

 Although material effects can greatly influence reliability in some cases, they are not 
easy to include in reliability calculations. The main difficulty is the assessment of the variation 
with time which depends greatly on the intrinsic characteristics of the placed rock and concrete. 
At this time only fairly primitive methods are available for assessment of the relevant material 
characteristics. In addition, the variation with time depends very much on the load-history which 
can be difficult to estimate for the relevant period of structural life. 

 Figure VI-6-6 illustrates an example situation representing the tensile strength of 
concrete armor units where a resistance parameter R(t) decreases with time t. R(t) is assumed to 
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be a deterministic function. The load S(t) (the tensile stress caused by wave action) is assumed to 
be a stationary process. The probability of failure, P(S > R), within a period T is 

Figure VI-6-6. Illustration of a first-passage problem 

0( ) 1- exp - [ ( )]T
f  T        R t  dtP      (VI-6-32) 

 
where v+ [R (t)] is the mean-upcrossing rate (number of upcrossings per unit time) of the level 
R(t) by the process S(t) at time t. v+ can be computed by Rice's formula 

[ ( )] ( - ) [ ( ), ]SSR R t    S  R   R t  S  dSf   
    

 

in which SSf   is the joint density function for S(t) and ( )S t . Implementation of time-variant 

variables into Level II analyses is rather complicated. For further explanation, see Wen and Chen 
(1987). 

VI-6-4. Failure Probability Analysis of Failure Mode Systems. 

 a. A coastal structure can be regarded as a system of components which can either 
function or fail. Due to interactions between the components, failure of one component may 
impose failure of another component and even lead to failure of the system. A so-called fault tree 
is often used to clarify the relationships between the failure modes. 

 b. A fault tree describes the relationships between the failure of the system (e.g., 
excessive wave transmission over a breakwater protecting a harbor) and the events leading to 
this failure. Figure VI-6-7 shows a simplified example based on some of the failure modes of a 
rubble-mound breakwater. 
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Figure VI-6-7. Example of simplified fault tree for a breakwater 

 c. A fault tree is a simplification and a systematization of the more complete so-called 
cause-consequence diagram that indicates the causes of partial failures as well as the interactions 
between the failure modes. An example is shown in Figure VI-6-8. 

 d. The failure probability of the system (for example, the probability of excessive wave 
transmission in Figure VI-6-7) depends on the failure probability of the single failure modes and 
on the correlation and linking of the failure modes. The failure probability of a single failure 
mode can be estimated by the methods described in Part VI-6-3. Two factors contribute to the 
correlation, namely physical interaction, such as sliding of main armor caused by erosion of a 
supporting toe berm, and correlation through common parameters like Hs. The correlations 
caused by physical interactions are not yet quantified. Consequently, only the common-
parameter-correlation can be dealt with in a quantitative way. However, it is possible to calculate 
upper and lower bounds for the failure probability of the system. 

 e. A system can be split into two types of fundamental systems, namely series systems 
and parallel systems as illustrated by Figure VI-6-9. 

 (1) Series systems. 

 (a) In a series system, failure occurs if any of the elements i = 1, 2, ... , n fails. The upper 
and lower bounds of the failure probability of the system, Pf S are 

1 21- (1- ) (1- ) ... (1- )U
f   S f   f    f   n Upper bound                        P P P P  (VI-6-33) 

max [ ]L
f   S f  iLower bound         P P  (VI-6-34) 
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Figure VI-6-8. Example of cause-consequence diagram for a rubble-mound breakwater 

Figure VI-6-9. Series and parallel systems 
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where max [Pf i] is the largest failure probability among all elements. The upper bound 
corresponds to no correlation between the failure modes and the lower bound to full correlation. 

Equation VI-6-33 is sometimes approximated by 
1

n
U
f S f i

i

P P


  which is applicable only for small 

f iP  because U
f SP  should not be larger than 1. 

 (b) The OR-gates in a fault tree correspond to series components. Series components are 
dominant in breakwater fault trees. In fact, the AND-gate shown in Figure VI-6-7 is included for 
illustration purposes, and in reality it should be an OR-gate. 

 (2) Parallel systems. 

 (a) A parallel system fails only if all the elements fail. 

minU
f   S f  iUpper bound     =  [   ]                                  P P  (VI-6-35) 

L
f   S f  1 f   2 f   nLower bound     =    . . . P P P P  (VI-6-36) 

 
 (b) The upper bound corresponds to full correlation between the failure modes, and the 
lower bound corresponds to no correlation. 

 The AND-gates in a fault tree represent parallel components. To calculate upper and 
lower failure probability bounds for a system, it is convenient to decompose the overall system 
into series and parallel systems. Figure VI-6-10 shows a decomposition of the fault tree (Figure 
VI-6-7). 

Figure VI-6-10. Decomposition of the fault tree into series and parallel systems 

 To obtain correct Pf S-values it is very important that the fault tree represents precisely 
the real physics of the failure development. This is illustrated by Example VI-6-2 where a fault 
tree alternative to Figure VI-6-7 is analyzed. In Example VI-6-2 the same failure mode 
probabilities as given in Example VI-6-1 are used. 

 The real failure probability of the system Pf S will always be in between Pf S
U and Pf S

L 
because some correlation exists between the failure modes due to the common loading 
represented by the sea state parameters, e.g., Hs. 
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 It would be possible to estimate Pf S if the physical interactions between the various 
failure modes were known and described by formulae, and if the correlations between the 
involved parameters were known. However, the procedure for determining such correlations are 
complicated and are not yet fully developed for practical use. 

 The probability of failure cannot in itself be used as the basis for an optimization of a 
design. Optimization must be related to a kind of measure (scale), which for most structures is 
the economy, but can include other measures such as loss of human life. 
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Figure VI-6-11. Example of simplified fault tree for a breakwater 

Figure VI-6-12. Decomposition of the fault tree into series and parallel systems 

 The so-called risk, defined as the product of the probability of failure and the 
economic consequences, is used in optimization considerations. The economic consequences 
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must cover all kinds of expenses related to the failure in question, i.e., cost of replacement, 
downtime costs, etc. 

VI-6-5. Parameter Uncertainties in Determining the Reliability of Structures. Calculation of 
reliability or failure probability of a structure is based on formulae describing the structure’s 
response to loads and on information about the uncertainties related to the formulae and relevant 
parameters. Basically, uncertainty is best given by a probability distribution; but because the true 
distribution is rarely known, it is common to assume a normal distribution and a related 
coefficient of variation, defined as 

standard deviation
 =   = 

mean value




 (VI-6-37) 

as the measure of the uncertainty. The term “uncertainty” is used in this chapter as a general term 
referring to errors, to randomness, and to lack of knowledge. 
 
 a. Uncertainty related to failure mode formulae. The uncertainty associated with a 
formula can be considerable. This is clearly seen from many diagrams presenting the formula as 
a smooth curve shrouded by a wide scattered cloud of data points (usually from experiments) 
that are the basis for the curve fitting. Coefficients of variation of 15 - 20 percent or even larger 
are quite normal. The range of validity and the related coefficient of variation should always be 
considered when using a design formula. 

 b. Uncertainty related to environmental parameters. The sources of uncertainty 
contributing to the total uncertainties in environmental design values are categorized as follows: 

 (1) Errors related to instrument response (e.g., from accelerometer buoy and visual 
observations). 

 (2) Variability and errors due to different and imperfect calculations methods (e.g., wave 
hindcast models, algorithms for time-series analysis). 

 (3) Statistical sampling uncertainties due to short-term randomness of the variables 
(variability within a stochastic process, e.g., two 20-min. records from a stationary storm will 
give two different values of the significant wave height) 

 (4) Choice of theoretical distribution as a representative of the unknown long-term 
distribution (e.g., a Weibull and a Gumbel distribution might fit a data set equally well but can 
provide quite different values for a 200-year event). 

 (5) Statistical uncertainties related to extrapolation from short samples of data sets to 
events of low probability of occurrence. 

 (6) Statistical vagaries of the elements. 

 (a) Distinction must be made between short-term sea state statistics and long-term 
(extreme) sea statistics. Short-term statistics are related to the stationary conditions during a sea 
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state, e.g., wave height distribution within a storm of constant significant wave height, Hs. 
Long-term statistics deal with the extreme events, e.g., the distribution of Hs over many storms. 

 (b) Related to the short-term sea state statistics the following aspects must be considered: 

 The distribution for individual wave heights in a record in deepwater and shallow-
water conditions, i.e., Rayleigh distribution and some truncated distributions, respectively. 

 Variability due to short samples of single peak spectra waves in deep and shallow 
water based on theory and physical simulations. 

 Variability due to different spectral analysis techniques, i.e., different algorithms, 
smoothing and filter limits. 

 Errors in instrument response and influence of measurement location. For example, 
floating accelerometer buoys tend to underestimate the height of steep waves. Characteristics of 
shallow-water waves can vary considerably in areas with complex seabed topography. Wave 
recordings at positions with depth-limited breaking waves cannot produce reliable estimates of 
the deepwater waves. 

 Imperfection of deep and shallow-water numerical hindcast models and quality of 
wind input data. 

 (c) Estimates of overall uncertainties for short-term sea state parameters (first three 
items) are presented in Table VI-6-1 for use when more precise site specific information is not 
available. 

 (d) Evaluation of the uncertainties related to the long-term sea state statistics, and use of 
these estimates for design, involves the following considerations: 

 The encounter probability. 

 Estimation of the standard deviation of a return-period event for a given extreme 
distribution. 

 Estimation of extreme distributions by fitting to data sets consisting of uncorrelated 
values of Hs from 

 Frequent measurements of Hs equally spaced in time. 

 Identification of the largest Hs in each year (annual series). 

 Maximum values of Hs for a number of storms exceeding a certain threshold value of 
Hs using peak over threshold (POT) analysis. 

The methods of fitting are the maximum likelihood method, the method of moments, the least 
square method, and visual graphical fit. 
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 Uncertainty on extreme distribution parameters due to limited data sample size. 

 Influence on the extreme value of Hs on the choice of threshold value in the POT 
analysis. (The threshold level should exclude all waves which do not belong to the statistical 
population of interest). 

 Errors due to lack of knowledge about the true extreme distribution. Different 
theoretical distributions might fit a data set equally well, but might provide quite different return 
period values of Hs . (The error can be estimated only empirically by comparing results from fits 
to different theoretical distributions). 

Table VI-6-1 
Typical Variational Coefficients σ = σ /μ (standard deviation over mean value) for Measured 

and Calculated Sea State Parameters (Burcharth 1992) 

Parameter 
Methods of 
Determination 

Estimated Typical 
Values 

Comments Σ Bias 

Significant wave height, 
OFFSHORE 
 
 
 
 
 
 
 
 
 
 
 
 
Significant wave height 
NEARSHORE determined 
from offshore significant 
wave height accounting for 
shallow-water effects 

Accelerometer buoy, 
pressure cell, vertical 
radar 
 
Horizontal radar 
 
Hindcast numerical 
models 
 
 
Hindcast, SMB method 
 
 
 
Visual observations 
from ships 
 
Numerical models 
 
Manual calculations 

0.05 - 0.1 
 
 
 
0.15 
 
0.1 - 0.2 
 
 
 
0.15 - 0.2 
 
 
 
0.2 
 
 
0.1 - 0.20 
 
0.15 - 0.35 

0 
 
 
 
0 
 
0 - 
0.1 
 
 
 
? 
 
 
 
0.05 
 
 
0.1 

 
 
 
 
 
 
Very dependent 
on quality of 
weather maps 
 
Valid only for 
storm conditions 
in restricted sea 
basins 
 
 
 
σ can be much 
larger in some 
cases 

Mean wave period offshore 
on condition of fixed 
significant wave height 

Accelerometer buoy 
 
Estimates from ampl. 
Spectra 
 
Hindcast, numerical 
models 

0.02 - 0.05 
 
0.15 
 
0.1 - 0.2 

0 
 
0 
 
0 
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Duration of sea state with 
significant wave height 
exceeding a specific level 

Direct measurements 
 
Hindcast numerical 
models 

0.02 
 
0.05 - 0.1 

0 
 
0 

 

Spectral peak frequency 
offshore 

Measurements 
 
Hindcast numerical 
models 

0.05 - 0.15 
 
0.1 - 0.2 

0 
 
0 

 

Spectral peakedness offshore Measurements and 
hindcast numerical 
models 

0.4 0  

Mean direction of wave 
propagation offshore 

Pitch-roll buoy 
 
Measurements η, u, v or 
p, u, v 1 
 
Hindcast numerical 
models 

5 degrees 
 
10 degrees 
 
 
15 - 30 
degrees 

  

Astronomical tides Prediction from 
constants 

0.001 - 
0.07 

0  

Storm surge Numerical models 0.1 - 0.25 0.1  
1 Two horizontal velocity components and water-level elevation or pressure. 

 

 Errors due to applied plotting formulae in the case of graphical fitting. Depending on 
the applied plotting formulae quite different extreme estimates can be obtained. The error can 
only be empirically estimated. 

 Climatological changes. 

 Physical limitations in extrapolation to events of low probability. The most important 
example might be limitations in wave heights due to limited water depths and fetch restrictions. 

 The effect of measurement error on the uncertainty related to an extreme event. 

 (e) It is beyond the scope of this chapter to discuss in more detail the mentioned 
uncertainty aspects related to the environmental parameters. Additional information is given in 
Burcharth (1992). 

 c. Uncertainty related to structural parameters. The uncertainties related to material 
parameters (such as density) and geometrical parameters (such as slope angle and size of 
structural elements) are generally much smaller than the uncertainties related to the 
environmental parameters and to the design formulae. 
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VI-6-6. Partial Safety Factor System for Implementing Reliability in Design. 

 a. Introduction to partial safety factors. 

 (1) The objective of using partial safety factors in design is to assure a certain reliability 
of the structures. This section presents the partial safety factors developed by the Permanent 
International Association of Navigation Congresses (PIANC) PTCII Working Group 12 
(Analysis of Rubble-Mound Breakwaters) and Working Group 28 (Breakwaters with Vertical 
and Inclined Concrete Walls), Burcharth (1991) and Burcharth and Sørensen (1999). 

 (2) The partial safety factors, γi , are related to characteristic values of the stochastic 
variables, Xi,ch . In conventional civil engineering codes the characteristic values of loads and 
other action parameters are often chosen to be an upper fractile (e.g., 5 percent), while the 
characteristic values of material strength parameters are chosen to be a lower fractile. The values 
of the partial safety factors are uniquely related to the applied definition of the characteristic 
values. 

 (3) The partial safety factors, γi , are usually larger than or equal to 1. Consequently, if we 
define the variables as either load variables Xi

load (for example Hs ) or resistance variables Xi
res 

(for example the block volume) then the related partial safety factors should be applied as 
follows to obtain the design values: 

,

,

•loaddesign load
i i chi

res
i chdesign

i res
i

    X X

X  X
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 (4) The magnitude of γi reflects both the uncertainty of the related parameter Xi, and the 
relative importance of Xi in the failure function. A large value, e.g., γHs = 1.4, indicates a 
relatively large sensitivity of the failure probability to the significant wave height, Hs. On the 
other hand, γ  1 indicates little or negligible sensitivity, in which case the partial coefficient 
should be omitted. Bear in mind that the magnitude of γi is not (in a mathematical sense) a 
stringent measure of the sensitivity of the failure probability of the parameter, Xi. 

 (5) As an example, when partial safety factors are applied to the characteristic values of 
the parameters in Equation VI-6-2, a design equation is obtained, i.e., the definition of how to 
apply the coefficients. The partial safety factors can be related either to each parameter or to 
combinations of the parameters (overall coefficients). The design equation obtained when partial 
safety factors are applied to each parameter is given by 

1/3
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 (6) If the partial safety factors are applied to combinations of parameters, there may be 
only γHs and an overall coefficient γZ related to the first term on the right-hand side of Equation 
VI-6-39. The design equation would then become 

 

 

1
3

, ,

,
, 1

3

cot 0

or

cot

s

s

ch
ch n ch D H s ch

Z

s ch
n ch Z H

ch ch D ch

A
G D K H

H
D

A K

 


 


   




 (VI-6-40) 

 
 (7) Equations VI-6-39 and VI-6-40 express two different "code formats." By comparing 
the two equations it is seen that the product of the partial coefficients is independent of the 
chosen format if the other parameters are equal. A goal is to have a system which is as simple as 
possible, i.e., with as few partial safety factors as possible, but without invalidating the accuracy 
of the design equation beyond acceptable limits. Fortunately, it is often possible to use overall 
coefficients, such as γA in Equation VI-6-40, without losing significant accuracy within the 
realistic range of parameter value combinations. This is the case for the partial safety factors 
system presented in this chapter where only two partial safety factors, γHs and γZ , are used in 
each design formula. 

 (8) Usually several failure modes are relevant to a particular design. The relationship 
between the failure modes are characterized either as series systems or parallel systems. A fault 
tree can be used to illustrate the complete system. The partial safety factors for failure modes 
associated with a system having a failure probability, Pf , are different from the partial safety 
factors for single failure modes having the same failure probability, Pf . Therefore, partial safety 
factors for single failure modes and multifailure mode systems must be treated separately. 

 b. Uncertainties and statistical models. Uncertainties in relation to rubble-mound 
breakwaters can be divided in uncertainties related to the following three groups: 

(1) Load uncertainties (wave modeling). 

(2) Soil strength uncertainties (modeling of soil strength parameters). 

(3) Model uncertainties (both wave load models and models for bearing capacity of the 
foundation). 

 (a) Wave modeling. 
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 For calibration of partial safety factors the maximum significant wave height in T 
years is denoted as T

sHF  , and it is modeled (for example) by the extreme Weibull distribution, 

given as 

_-
( ) 1- exp -T

S

T

s s
sH

  H H           F H
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where λ is the number of observations per year, HS is the threshold level, and α and β are the 
Weibull distribution parameters. 
 

 For calibration of the PIANC partial safety factor system, wave data from four quite 
different geographical locations were selected as presented in Table VI-6-2. In Table VI-6-2, N 
is the number of data samples and h is the water depth in meters. 

Table VI-6-2 
Wave Data from Different Locations Fitted to a Weibull Distribution 

(β, HS and h are in meters) 
 N λ α β (m) HS (m)  h (m) 
Bilbao 50 4.17 1.39 1.06 4.9 25 
Sines 15 1.25 1.78 2.53 7.1 25 
Tripoli 15 0.75 1.83 3.24 2.9 25 
Fallonica 46 5.94 1.14 0.58 2.7 10 

 

 The wave data from Bilbao, Sines and Tripoli correspond to deepwater waves, 
whereas the wave data from Fallonica corresponds to shallow-water waves. To model the 
statistical uncertainty, α and β are modeled as independent and normally distributed. 

 The model uncertainty related to the quality of the measured wave data is modeled by 
a multiplicative stochastic variable FHs which is assumed to be normally distributed with 
expected value 1 and standard deviation 

h  sF  . High quality and low quality wave data could be 

represented by 
H sF   = 0.05 and 0.2, corresponding to accelerometer buoy and fetch diagram 

estimates, respectively, as given by Table VI-6-1. 

 (b) Soil strength modeling. 

 Statistical modeling of the soil strength (sand and/or clay) is generally difficult, and 
only few models are available in the literature that can be used for practical reliability 
calculations. In general the material characteristics of the soil have to be modeled as a stochastic 
field. The parameters describing the stochastic field have to be determined on the basis of the 
measurements which are usually performed to characterize the soil characteristics. Because these 
measurements are only performed in a few locations, statistical uncertainty due to the sparse data 
is introduced, and this uncertainty must be included in the statistical model. Furthermore, the 
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uncertainty in the determination of the soil properties and the measurement uncertainty must also 
be included in the statistical model. 

 Because breakwaters are composed of loose material in frictional contact, and it is 
assumed that the foundation failure modes are developed in the core; only statistical models for 
the effective friction angle and the angle of dilation are needed. Usually these angles are 
modeled by normal or lognormal distributions. 

 The bearing capacities related to the geotechnical failure modes are estimated using 
the upper bound theorem of classical plasticity theory where an associated flow rule is assumed. 
However, the friction angle and the dilation angle for the rubble-mound material and the sand 
subsoil are usually different. Therefore, in order to use the theory based on an associated flow 
rule, the following reduced effective friction angle d is used (Hansen 1979): 

sin cos
tan

1- sin sind
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where  is the effective friction angle and ψ is the dilation angle. 
 
 (c) Model uncertainties. 

 In general, model uncertainties related to a given mathematical model can be 
evaluated on the basis of: 

 Comparisons between experimental tests/measurements and numerical model 
calculations. 

 Comparisons between numerical calculations with the given mathematical model and 
a more advanced/complex model. 

 Expert opinions. 

 Information from the literature. 

 Many laboratory experiments have been performed for most of the failure modes 
related to hydraulic instability of the armor layer. Based on these experiments the model 
uncertainty can be estimated. Model uncertainty connected with extrapolation from laboratory to 
a real structure can be judged on the basis of expert opinions, information from the literature, and 
observations of similar existing structures. 

 For soil strength models no similar measurements models are available. However, if 
“simple” rotation and translation failure models based on the upper bound theorem of plasticity 
theory are used, then these can be evaluated by comparison with results from more refined 
numerical calculations using nonlinear finite element programs. Estimates of the model 
uncertainties can thus be obtained. 
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 c. Format for partial safety factors. 

 (1) The PIANC partial safety factors are calibrated with the following input: 

(a) Design lifetime TL (= 20, 50 or 100 years). 

(b) Acceptable probability of failure Pf (= 0.01, 0.05, 0.10, 0.20, or 0.40). 

(c) Coefficient of variation 
H sF   = (0.05 and 0.20). 

(d) Deep or shallow-water conditions. 

(e) Wave loads determined with or without hydraulic model tests. 

 (2) The partial safety factors are as follows: 

(a) A load partial safety factor γP to be applied to the mean value of the permanent load 
(= 1). 

(b) A load partial safety factor γH to be applied to ˆ LT
sH  (the central estimate of the 

significant wave height which, in average, is exceeded once every TL years). 

(c) A partial safety factor to be used to the combination of the mean values of the 
resistance variables as shown in the design equation. γZ is to be used with friction materials in 
rubble-mound and/or subsoils (tangent to the mean value of the friction angle is divided by γZ ). 

(d) A partial safety factor γC to be used with the mean value of the undrained shear 
strength of clay materials in the subsoil (the mean value of the undrained shear strength is 
divided by γC ). 

 d. Tables of partial safety factors. 

 (1) Partial safety factors are presented in Table VI-6-3. 

 (2) In the case of vertical walls, wave forces are calculated from the Goda formula. 
Furthermore, the following factors are used to compensate for the positive bias inherent in the 
Goda formula (see Table VI-5-55): 

ˆ
Hor. ForceU  = 0.90, bias factor to be applied to the Goda horizontal wave force 

 
ˆ

Ver. ForceU  = 0.77, bias factor to be applied to the Goda vertical wave force 

 
ˆ

Hor. MomentU  = 0.81, bias factor to be applied to the moment from the Goda horizontal wave 

forces around the shoreward heel of the base plate 
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ˆ
Ver. MomentU  = 0.72, bias factor to be applied to the moment from the Goda vertical wave forces 

around the shoreward heel of the base plate 
 
A carrot symbol ( ^ ) over the variable indicates a mean value. 

Table VI-6-3 
Partial Safety Factor Tables 

Structure Failure Armor Table(s) 

Rubble-mound 
structures 

Armor stability Rocks VI-6-4 - VI-6-6 

Cubes VI-6-7 

Tetrapods VI-6-8 

Dolosse VI-6-9 & VI-6-10 

Hollowed Cubes VI-6-11 & VI-6-12 

Toe berm  VI-6-13 

Breakage Dolosse VI-6-14 & VI-6-15 

Tetrapods VI-6-16 

Runup Rock VI-6-17 

Hollowed Cubes VI-6-18 

Dolosse VI-6-19 

Scour  VI-6-20 & VI-6-21 

Vertical-wall caisson 
structures 

Foundation: sand subsoil VI-6-22 

Foundation: clay subsoil VI-6-23 

Sliding failure VI-6-24 

Overturning failure VI-6-25 

Scour VI-6-26 

Toe berm VI-6-27 

 

 (3) Part VI-7, “Example Problems,” contains worked design examples for the most 
common coastal structures. Some of these examples include a reliability analysis based on the 
information contained in Tables VI-6-4 to VI-6-27 either as part of the design or as an alternative 
to deterministic methods based on a single return period of occurrence. The Part VI-7 examples 
provide coastal engineers with guidance on selection of partial safety factors γHs and γZ for 
various levels of Pf and 

H sF  . 
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Table VI-6-4 
Partial Safety Factors for Stability Failure of Rock Armor, Hudson Formula, Design Without 

Model Tests 
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Table VI-6-5 
Partial Safety Factors for Stability Failure of Rock Armor, Plunging Waves, van der Meer 

Formula, Design Without Model Tests 
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Table VI-6-6 
Partial Safety Factors for Stability Failure of Rock Armor, Surging Waves, van der Meer 

Formula, Design Without Model Tests 

 

 

Table VI-6-7 
Partial Safety Factors for Stability Failure of Cube Block Armor, van der Meer Formula, 

Design Without Model Tests 
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Table VI-6-8 
Partial Safety Factors for Stability Failure of Tetrapods, van der Meer Formula, Design 

Without Model Tests 
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Table VI-6-9 
Partial Safety Factors for Stability Failure of Dolosse, Without Superstructure, Burcharth 

Formula, Design Without Model Tests 
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Table VI-6-10 
Partial Safety Factors for Stability Failure of Dolosse, With Superstructure, Burcharth and Liu 

(1995a), Design Without Model Tests 
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Table VI-6-11 
Partial Safety Factors for Stability Failure of Trunk of Hollowed Cubes, Slope 1:1.5 and 1:2, 

Berenguer and Baonza (1995), Design Without Model Tests 
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Table VI-6-12 
Partial Safety Factors for Stability Failure of Roundhead of Hollowed Cubes, Slope 1:1.5 and 

1:2, Berenguer and Baonza (1995), Design Without Model Tests 
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Table VI-6-13 
Partial Safety Factors for Stability Failure of Toe Berm, Parallelepiped Concrete Blocks and 

Rocks., Burcharth Formula, Design Without Model Tests 

 

 

Table VI-6-14 
Partial Safety Factors for Trunk Dolos Breakage, Burcharth Formula, Design Without Model 

Tests 
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Table VI-6-15 
Partial Safety Factors for Roundhead Dolos Breakage, Burcharth Formula, Design Without 

Model Tests 
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Table VI-6-16 
Partial Safety Factors for Trunk Tetrapod Breakage, Burcharth Formula, Design Without 

Model Tests 
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Table VI-6-17 
Partial Safety Factors for Runup, Rock Armored Slopes, De Waal and van der Meer (1992), 

Design Without Model Tests 
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Table VI-6-18 
Partial Safety Factors for Runup, Hollowed Cubes, Slopes 1:1.5 and 1:2, Berenguer and 

Baonza (1995), Design Without Model Tests 
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Table VI-6-19 
Partial Safety Factors for Runup, Dolosse, Slopes 1:1.5, Burcharth and Liu (1995b), Design 

Without Model Tests 
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Table VI-6-20 
Partial Safety Factors for Steady Stream Scour Depth in Sand at Conical Roundheads, Fredsøe 

and Sumer (1997), Design Without Model Tests 
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Table VI-6-21 
Partial Safety Factors for Scour Depth in Sand at Conical Roundheads in Breaking Wave 

Conditions, Fredsøe and Sumer (1997), Design Without Model Tests 
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Table VI-6-22 
Partial Safety Factors for Foundation Failure of Vertical Wall Caissons - Sand Subsoil 
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Table VI-6-23 
Partial Safety Factors for Foundation Failure of Vertical Wall Caissons - Clay Subsoil 
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Table VI-6-24 
Partial Safety Factors for Sliding Failure of Vertical Wall Caissons 
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Table VI-6-25 
Partial Safety Factors for Overturning Failure of Vertical Caissons 
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Table VI-6-26 
Partial Safety Factors for Scour at Circular Vertical Wall Roundheads, Sumer and Fredsøe 

(1997), Design Without Model Tests 
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Table VI-6-27 
Partial Safety Factors for Toe Berm Rock Armor Failure in Front of Vertical Wall Caissons, 

Design Without Model Tests 
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VI-6-9. Symbols. 

α Weibull distribution parameter 

α Armor slope angle 

ß Weibull distribution parameter 

βHL Hasofer and Lind reliability index 

β Reliability index 

γi Partial safety factors 

λ Number of observations per year 

μ Mean value 

ρc Mass density of caisson [force/length3] 

ρw Mass density of water (salt water = 1,025 kg/m3 or 2.0 slugs/ft3; fresh water 
= 1,000 kg/m3 or 1.94 slugs/ft3) [force-time2/length4] 

ρs Mass density of concrete [force/length3] 

ρs Block density 

σFHs Coefficient of variation 

σ Standard deviation 

Ψ Angle of dilation [degrees] 
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 Packing density 

 Angle of friction in granular material [degrees] 

B Width of caisson [length] 

cu Undrained shear strength of clay [force/length2] 

D Relative number of units 

Dn Nominal block diameter [length] 

f Friction coefficient [dimensionless] 

FU Wave induced uplift force [force] 

FH Horizontal wave force [force] 

FG Buoyancy reduced weight of caisson [force] 

g Failure function 

HT
s Significant wave height with return period T 

h Water depth [length] 

hS Threshold level 

HS Significant wave height [length] 

KD Coefficient signifying the degree of damage [dimensionless] 

Lom Deepwater wave length corresponding to mean wave period [length] 

Lop Deepwater wave length corresponding to the peak wave period [length] 

MG Moment around the heel of caisson by buoyancy-reduced weight of the caisson 
[length-force] 

MH Moment around the heel of caisson by wave induced horizontal force [length-force] 

MU Moment around the heel of caisson by wave induced uplift force [length-force] 

Nod Number of units displaced out of the armor layer 

Nz Number of waves 

N Number of data points 

P Notational permeability parameter (Figure VI-5-11) 

Pf Probability of failure 

Ru Maximum runup or water-surface elevation measured vertically from the still-water 
level [length] 

r Dolos waist ratio [dimensionless] 
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Rf Reliability 

R Variable representing the variations in resistance between nominally identical 
structures 

som Wave steepness (=Hs/Lom) 

sop Deepwater wave steepness [dimensionless] 

S Represents the maximum load effects within a period of time 

TL Design lifetime [years] 

Tm Wave period [time] 

Um Maximum wave orbital velocity at the bed with no structure [length/time] 

W Water level [length] 

 


